Genetic evaluation of growth in nellore cattle by multiple-trait and random regression models.
نویسندگان
چکیده
The objective of this study was to identify issues in genetic evaluation of beef cattle for growth by a random regression model (RRM). Genetic evaluation data included 2,946,847 records of up to nine sequential weights of 812,393 Nellore cattle measured at ages ranging from birth to 733 d. Models considered were a five-trait multiple-trait model (MTM) and a cubic RRM. The MTM included the effects of contemporary group, age of dam class, additive direct, additive maternal, and maternal permanent environment. Both additive effects were assumed correlated. The RRM included the same effects as MTM, with the addition of permanent and random error effects. The purpose of the random error effect, which was in addition to a residual effect with constant variance, was to model heterogeneous residual variances. All effects in RRM were modeled as cubic Legendre polynomials. Expected progeny differences (EPD) were obtained iteratively using a preconditioned conjugate gradient algorithm. Numerically accurate solutions with RRM were not obtained until the random regressions were orthogonalized. Computing requirements of RRM were reduced by more than 50%, without affecting the accuracy by removing regressions corresponding to very low eigen-values and by replacing the random error effects with weights. Afterward, the correlations between EPD from RRM and from MTM for EPD on selected weights were between 0.84 and 0.89. For sires with at least 50 progeny, these correlations increased to 0.92 to 0.97. Low correlations were caused by differences in parameters. The RRM applied to growth i s prone to numerical problems. Estimates of EPD with RRM may be more accurate than those with MTM only if accurate parameters are applied.
منابع مشابه
Constructing covariance functions for random regression models for growth in Gelbvieh beef cattle.
Genetic parameters for a random regression model of growth in Gelbvieh beef cattle were constructed using existing estimates. Information for variances along ages was provided by parameters used for routine Gelbvieh multiple-trait evaluation, and information on correlations among different ages was provided by random regression model estimates from literature studies involving Nellore cattle. B...
متن کاملRandom regression analyses using B-spline functions to model growth of Nellore cattle.
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects ...
متن کاملAnalyses of growth curves of nellore cattle by multiple-trait and random regression models.
The purpose of this study was to compare estimates of genetic parameters for sequential growth of beef cattle using two models and two data sets. Growth curves of Nellore cattle were analyzed using body weights measured at ages 1 (birth weight) to 733 d. Two data samples were created, one with 71,867 records sampled from all herds (MISS), and the other with 74,601 records sampled from herds wit...
متن کاملمقایسه دو مدل رگرسیون تصادفی تک صفتی و چند صفتی در برآورد پارامترهای ژنتیکی صفات تولیدی در گاوهای شیری هلشتاین
In this research test-day records of milk, fat and protein yields of first lactation of 11368 Holstein cows were used to comparison of estimated genetic parameters by restricted maximum likelihood method based on single trait and multiple trait random regression models. These data were collected from 133 herds during 2001 to 2010 by Cattle Breeding and Dairy Product Improvement Center. Herita...
متن کاملHeritabilities and Genetic Correlations for Egg Weight Traits in Iranian Fowl by Multi Trait and Random Regression Models
Objective: The main objective of this research was estimation of genetic parameters for five consecutive measurements of egg weights in Isfahan fowl using multi trait model and random regression models. Methods: The statistical models included generation-hatch as a fixed effect, weeks of age as a covariate and additive genetic and individual permanent environmental effects as random effects. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 81 4 شماره
صفحات -
تاریخ انتشار 2003